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endoliposomal functional head groups to exoliposomal loci, whereas 
similar treatment of differentiated 1-F, 2-F, or 5-F coliposomes 
brings about reequilibrations with f1/2 = 2-5 min. 

Even 1 h of heating at 60 0C occasions only 18% flip of 3-F 
or 4-F. This unprecendented3'13 thermal stability for ammonium 
ion lipids, expressed as extraordinary resistance to transverse 
bilayer migration, reflects the inability of biphenyl-stiffened, 
bridging 3-F or 4-F to readily bend within the bilayer. Monopolar 
lipids, or the all-methylene bola 1-F with no built-in barrier to 
bending, exhibit normal dynamics. 

In bilayers, the biphenyl units of 3-F and 4-F inhibit bending 
in the middle of the bolas' main chains. However, monolayers 
of 3-NF, like the natural bolaamphiphiles,ud'e do feature U-plan 
arrangements at the air/water interface.14 The bending here must 
occur at either side of the biphenyl group. 
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The synthetic incorporation of non-natural functionality into 
oligonucleotides has provided a variety of templates upon which 
to tether reactive or reporter groups2 such as chemically reactive 
species3'4 or intercalating ring systems.5 Various reports have 
described the synthesis and incorporation of "modified'' nucleic 
acids into oligonucleotides;2'6 the most flexible approaches have 
utilized a postsynthesis modification strategy. This tactic involves 
the incorporation of a functionalized non-natural nucleic acid into 
a growing oligonucleotide chain and is followed by chemical 
modification of the non-natural base. This makes possible the 
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divergent incorporation of reactive functionality that would oth­
erwise be incompatible with solid-phase synthesis conditions. 
Examples include reports by Webb and Matteucci3" and Verdine 
and co-workers7 that describe the synthesis and postsynthetic 
modification of base-functionalized oligonucleotides. Herein, we 
report our preliminary results on the incorporation of 4-thio-2'-
deoxyuridine residues into oligodeoxynucleotides,8 and the de­
velopment of the appendant thiocarbonyl group as a site-specific 
handle for the attachment of functionalized tethers. 

The synthesis of thionucleic acid-containing oligonucleotides 
is hampered by the instability of the thiocarbonyl group to sol­
id-phase synthesis conditions.88 We reported' an efficient synthesis 
of S-(2-cyanoethyl) 4-thio-2'-deoxyuridine (1) and detailed its 
stability to reagents used for oligonucleotide synthesis.815'10 An 
S-cyanoethyl ether allows for S-deprotection concomitant with 
removal of the cyanoethyl ester phosphate protecting groups.10 

Disulfide-based protecting groups were unsuitable, since the di­
sulfide linkage labilized the carbon-sulfur thioimidate bond to 
hydrolysis. Other protecting groups83 and methods for incorpo­
ration of a thiocarbonyl group11 have not proven effective. 

Protection of 1 as the dimethoxytrityl (DMTr) ether (DMTrCl, 
pyridine, 25 0C, 87%) afforded 2 and was followed by phosphi-
tylation10 (tetrazole, (1-Pr2N)2POCH2CH2CN, CH3CN, 25 0C, 
98%) to afford phosphoramidite 3. Incorporation of 3 into a 
growing oligonucleotide chain was achieved using an Applied 
Biosystems 38OB oligonucleotide synthesizer.10 Thus, phosphi-
tylation of the S'-hydroxyl group of a solid support (ss) linked 
TT-dinucleotide with 3 was followed by standard end-capping 
(Ac2O, 2,6-lutidine, THF), oxidation (I2, H20/pyridine/THF), 
detritylation (2% CCl3CO2H (TCA) in CH2Cl2), and oligomer 
elongation with two additional thymidine residues to afford 4. The 
S-cyanoethyl ether and O-cyanoethyl phosphate esters were re­
moved by treatment with 1.0 M DBU in CH3CN for 1 h.12 

Cleavage of the oligonucleotide from the solid support (concen­
trated NH4OH, 25 0C, 2 h) afforded pentamers 5 and 6. Yields 
for each coupling step were in excess of 94%. "Trityl-on" pentamer 
6 could be purified by HPLC (1 X 25 cm Cl8 column, 0.1 M 
NH4OAc, 1-50% CH3CN/H20 gradient, 4 mL/min). The purity 
of pentamers 5 and 6 was determined by 1H NMR spectroscopy; 
no resonances were observed that were attributable to a uridine 
residue. 
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The thiocarbonyl group of 5 and 6 proved suitable for at­
tachment of pendant groups. In studies utilizing 4-thiouridine, 
we observed that significant rates of S-alkylation'3 under aqueous 
conditions (50 mM pH 8 PO4

3", 10-30% DMF) required reactive 
electrophiles such as allylic or benzylic bromides. This metho­
dology was applied by treatment of pentamer 6 with iodomethane 
(«1 equiv) in 0.1 M pH 8 phosphate buffer (10% DMF) and 
afforded 5-methyl thioimidate 7 in quantitative yield, as evidenced 
by the complete disappearance of the C5-H and C6-H signals of 
6 in the 1H NMR, which were replaced by two new signals 
corresponding to 7.14 Although S-alkylation of the thiocarbonyl 
group of 6 occurred quantitatively, it is not apparent whether this 
protocol for attachment of tethers will prove selective with oli­
gonucleotides containing nucleophilic residues (e.g., G or A). 
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We developed a simple method for tether attachment that relied 
on selective mixed disulfide formation. Reaction of 4-thiouridine 
(8) with N-mercaptophthalimides 9a-d1516 (1 equiv) in aqueous 
buffer containing 2% DMF (25 0C, 1 h) effected thiol-group 
transfer to afford mixed imino disulfides lOa-d in >90% yields. 
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Similarly, treatment of pentanucleotide 5 with the thiol-transfer 
reagent /V-((2-chloroethyl)thio)phthalimide (9b)16 in phosphate 
buffer (pH 8) containing 5% DMF effected quantitative conversion 
to disulfide 11. Effective conversion of 5 to 11 was evident in the 
1H NMR (500 MHz, D2O) by the complete, disappearance of the 
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C5-H and C6-H signals of 5, which were replaced by two new 
signals corresponding to 11." The transformation of 5 to U is 
anticipated to be selective for thioalkyl transfer to thiocarbonyl 
groups and, therefore, potentially more appropriate for tether 
attachment than S-alkylation. 
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We have demonstrated a convenient and effective protocol for 
the incorporation of 4-thio-2'-deoxyuridine into simple oligo­
nucleotides. This procedure used an 5-(2-cyanoethyl) ether9 as 
a thiocarbonyl protecting group, which was shown to be completely 
stable to the reaction conditions used during solid-phase oligo­
nucleotide synthesis. Quantitative S-deprotection was effected 
by treatment of the support-linked oligonucleotide with DBU in 
CH3CN. Further studies illustrated that the thiocarbonyl group 
provides a convenient point of attachment of alkyl tethers by 
postsynthetic S-alkylation or mixed disulfide formation. This 
methodology will be of potentially general value in appending a 
variety of reactive or reporter groups to 4-thio-2'-deoxyuridine-
containing oligonucleotides. 
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The rearrangement of a singlet carbene to an alkene is well-
known, and its stereochemical aspects have been probed experi­
mentally1 and theoretically2 for migration of H (1 -» 2). The 
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